SHADOWS OF 3-UNIFORM HYPERGRAPHS UNDER A MINIMUM
DEGREE CONDITION

ZOLTAN FUREDI AND YI ZHAO

ABSTRACT. We prove a minimum degree version of the Kruskal-Katona theorem for triple
systems: given d > 1/4 and a triple system F on n vertices with minimum degree §(F) >
d(g)7 we obtain asymptotically tight lower bounds for the size of its shadow. Equivalently,
for t > n/2 — 1, we asymptotically determine the minimum size of a graph on n vertices, in
which every vertex is contained in at least (;) triangles. This can be viewed as a variant of the
Rademacher—Turan problem.

1. INTRODUCTION

Given a set X and a family F of k-subsets of X, the shadow OF of F is the family of all
(k — 1)-subsets of X contained in some member of F. The Kruskal-Katona theorem [12] 13] is
one of the most important results in extremal set theory — it gives a tight lower bound for the
size of shadows of all k-uniform families of a given size. The following is a version due to Lovész
[17]. Note that it is tight when ¢ is an integer by considering the family of all k-subsets of a set
of t vertices.

Theorem 1 (Kruskal-Katona theorem). If F is a family of k-sets with |F| > (li) for some real
number t, then |0F| > (kil)

A family F of k-subsets of X is often regarded as a k-uniform hypergraph, or k-graph (X, F)
with X as the vertex set and F as the edge set. For every z € X, define F,, = {F\z:2 € F
and F' € F}. The minimum (vertex) degree of F is denoted by §(F) := ming |F;|. The
following minimum degree version of the Kruskal-Katona theorem has not been studied before
but emerged naturally when Han, Zang, and Zhao [9] investigated a packing problem for 3-
graphs.

Problem 2. Given k > 3 and 0 < d < 1, let X be a set of n vertices and F be a family of
k-subsets of X with 6(F) > d(kfl)ﬂ How small can |0F| be?

Problem [2| belongs to an area of active research on extremal problems under maximum or
minimum degree conditions. Two early examples are the work of Bollobas, Daykin, and Erdos
[1], who studied the minimum degree version of the Erdds matching conjecture, and of Frankl
[6], who studied the Erdés-Ko-Rado theorem under maximum degree conditions. More recent
examples include the minimum (co)degree Turdn’s problems [15] (18], the minimum degree version
of the Erdés—-Ko-Rado theorem [8, 10, 14], and the minimum degree version of Hilton—Milner
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L It is more natural to assume 0(F) > d(Z:i) as (::i) is the largest possible degree. However, since we are
mainly interested in the asymptotics of |0F|, we choose the simpler looking condition 6(F) > d(,",).
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theorem [7, [14]. Recently Jung and Katona [I1] studied minimum |[0F|/|F| among all k-graphs
F with maximum degree A(F) < d.

Since §(F) > d(,",) implies that |F| > d(}), we could apply Theorem [I| to F but will not
obtain a tight bound for |8J—" |. A better approach is applying Theorem I to F; for each vertex .

Since | Fy| > d(,",) > (dk 1") by Theorern we have [0F,| > (dk 1”) > de= (") +O0(nk=3).
Consequently,

|0F%| noLk2/n k—2 b2l N k—2
(1) \8.7-"]_2 i el O el IS Cl (RS [ el (B

This bound is tlght (up to the error term) when the first inequality in is asymptotically
1

an equality, which occurs when F, is a clique of order d*-1n for every x. Thus, the bound in
is asymptotically tight when F consists of alﬁ vertex-disjoint cliques of order dﬁn, in
particular, when d = ¢1=* for some ¢ € N.

In this paper we improve and answer Problem [2| asymptotically for k¥ = 3 and d > 1/4.
Two overlapping cliques of order about \f dn+1 is a natural candidate for extremal hypergraphs
— the following theorem confirms this for <d< 4= 5\ﬁ ~ 0.385. However, there is a different
extremal hypergraph for larger values of d

Theorem 3. Let 1/4 < d < 1 and n € N be sufficiently large. If F is a triple system on n
vertices with 6(F) > d(3), then

Wa-2a-1)(3) if} <d< T

0| = .
(Vo) @) oz mp

These bounds are best possible up to an additive term of O(n).

Although seemingly technical, Theorem [3 has an interesting application on 3-graph packing
and covering. Given positive integers a,b,c, let K 3 . denote the complete 3-partite 3-graph
with parts of size a,b, and c¢. Answering a question of Myecroft [19], Han, Zang, and Zhao [9]
determined the minimum §(H) of a 3-graph H that forces a perfect K3, -packing in H for any

a,b,c
given a, b, cE| One of the main steps in their proof is determining the smallest 6(H) of a 3-graph
H that guarantees that every vertex of H is covered by a copy of K b . (this is necessary for H

containing a perfect Kg’ b.o-Packing).

Corollary 4. [0, Lemma 3.7] Let dy = 6 — 4v/2 ~ 0.343. For any v > 0, there exists n > 0
such that the following holds for sufficiently large n. If H is an n-vertex 3-graph with §(H) >
(do+7) (g), then each vertex of H is contained in at least nm®T0+te=1 copies of K3

It was shown [9], Construction 2.6] that dy in Corollaryis best possible. A proof of Corollary
can be found in [9] — we give a proof outline at the end of Section 2.

Our approach towards Theorem [3] is viewing it as an extremal problem on graphs. The
following is an equivalent form of Problem [2 l in which KF denotes the complete k-graph on ¢
vertices (and we omit the superscript when k = 2).

Problem 5. Given a (k — 1)-graph G on n wvertices such that every vertex is contained in at

least d(kfl) copies of K,]j_l, how many edges must G have?

2 Given hypergraphs H and F, a perfect F-packing in H is a spanning subgraph of H that consists of vertex-
disjoint copies of F'.
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To see why Problems [2 and [5| are equivalent, let m; be the minimum |0F| for Problem [2[ and
mg be the minimum e(G) for Problem To see why my > ms, consider a k-uniform family
F with 6(F) > d(,",). Let G = (V(F),0F) be the (k — 1)-graph of its shadow. Since every
member of F gives rise to a copy of K ffl in G, 6(F) > d(kﬁl) implies that every vertex is
contained in at least d(," ) copies of K,f_l. Thus |0F| = e(G) > may. To see why ma > my,
consider a (k — 1)-graph G such that every vertex is contained in at least d (kﬁl) copies of K ,’jfl.

Let F be the family of k-subsets of V(G) that span copies of K ,’:_1 in G. Then OF C G and for
every v € V(G), we have |F,| > d(,",). Thus e(G) > [0F| > m; as desired.

In order to prove Theorem , we solve the k = 3 case of Problem with d > 1/4. For
convenience, we assume that every vertex of G is contained in at least (2) triangles. There are
essentially two extremal graphs: the first one consists of two copies of K41 that share 2t +2—n
vertices; the second one is obtained from two disjoint copies of K/, by adding a regular bipartite
graph between them. The size of these two extremal graphs can be conveniently represented by
a quadratic function f(z), which arises naturally from a lower bound for e(G) in Proposition

Theorem 6. Let n € N, t,r € R such thatn/2 <t+1<mn,r >0, and

(02))-()

Define a function f: R — R as

3) fa)= () +etn-0- ("7

If G is an n-vertex graph such that each vertez is contained in at least (g) triangles, then

f(t) if 1+t < 32 or approzimately t < 0.6208n
> 6 )
(4) e(G) = { f(5 4+7r—1) otherwise.

Furthermore, these bounds are tight when n/2,t,r are integers, and tight up to an additive O(n)
in general.

Theorem [6] can be viewed as a variant of the well-studied Rademacher—Turén problem. Start-
ing with the work of Rademacher (unpublished) and of Erdds [4], the Rademacher—Turan prob-
lem studies the minimum number of triangles in a graph with given order and size. Instead of
the total number of triangles in a graph, one may ask for the maximum or minimum number of
triangles containing a fixed vertex. Given a graph G, we define the triangle-degree of a vertex as
the number of triangles that contain this vertex. Let Ak, (G) and dk, (G) denote the maximum
and minimum triangle-degree in G, respectively. The contrapositive of Theorem [f] states that
if G is a graph on n vertices that fails , then 0k, (G) < (;) Correspondingly, the mazimum
triangle-degree version of Rademacher—Turdan problem was recently studied by Falgas-Ravry,
Markstrém, and Zhao [5]. In addition, Theorem |§| looks similar to the question of Erdés and
Rothschild [3] on the book size of graphs: in the complementary form, it asks for the maximum
size of a graph on n vertices, in which every edge is contained in at most d triangles.

We prove Theorem [6] and Theorem [3]in the next section. When ¢ < n/2—1, it is reasonable to
speculate that an extremal graph is a disjoint union of copies of K;11 and an extremal graph for
Theorem [6] Unfortunately we cannot verify this. We provide some evidence for this speculation
in the last section.

Notation. Given a family F of sets, |F| is the size of F, namely, the number of sets in F.
A E-uniform hypergraph H, or k-graph, consists of a vertex set V(H) and an edge set F(H),
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which is a family of k-subsets of V/(H). Given a vertex set S, denote by ey (S) the number of
edges of H induced on S. Suppose G is a graph. For a vertex v € V(G), let Ng(v) denote
the neighborhood of v, the set of vertices adjacent to v, and let dg(v) = |Ng(v)| be the degree
of v. Let Ng[v] := Ng(v) U {v} denote the closed neighborhood of v. When the underlying
(hyper)graph is clear from the context, we omit the subscript in these notations.

2. PrROOFS OF THEOREM [6]l AND THEREOM [3]

Suppose that G = (V| E) is a graph on n vertices such that each vertex is contained in at
least (;) triangles, in other words,

(5) W eV, e(N@v) > (;)

where t is a positive real number. Trivially ¢ < 6(G) < n — 1 because e(N(v)) < (d(zv)) for every
vertex v € V. Therefore

When ¢ + 1 divides n, this bound is tight because G can be a disjoint union of 7 copies of
Kiy1. Below we often assume that ¢ < n — 2 because when ¢t = n — 1, we must have G = K,,.
Let us derive another lower bound for e(G) by using the function f defined in .

Proposition 7. If G = (V, E) is a graph on n vertices satisfying (5), then e(G) > f(6(G)), and
the equality holds if and only if there exists vo € V' such that e(N(vo)) = (3), d(v) = 6(G) for
all v & N(vg), and V' \ Nvg] induces a clique.

Proof. Suppose §(G) = and vy € V satisfies d(vg) = . Since we may partition E(G) into the
edges induced on N(vp) and the edges incident to some vertex v € N(vp), we have

e(G) =e(N(w))+ [ D d e(V\ N(v)).
v&N (vo)
Because of (f]), d(v) > § for all v & N(vp), and e(V \ N(vg)) < (nfgfl) (note that vy has no
neighbor outside N(vp)), we derive that e(G) > (;) +d(n—9) — ("_g_l), and equality holds
exactly when e(N(vg)) = (;), d(v) = (G) for all v & N(vg), and V' \ N[vg] induces a clique. O

Let us construct three graphs satisfying . Note that, if r satisfies , then r < n/2 because
("5 +3(%) = (51 2 (5)-
Construction 8. Suppose t,r € R satisfy 5 —1<t<n—-2,r>0, and .
(1) Let G be the union of two copies of Ky41 sharing 2[t] + 2 — n wvertices.
(2) When n is even, let Go be the n-vertex graph obtained from two disjoint copies of K,,
by adding an [r]-regular bipartite gmph between two cliques.
(3) When n is odd, let r' € R satisfy ( ) +3(4 ) (;) Let G be the n-vertex graph
obtained from two disjoint copies of K(n 1)/2 by adding an [r"]-reqular bipartite graph

between them, and a new vertex whose adjacency is the exactly the same as one of the
existing vertices.

It is easy to see that Gp, G2, G} all satisfy . For example, consider a vertex z € V(Ga).
Let A and B denote the vertex sets of the two copies of K, /, of G and assume x € A. Then
N(z) contains ("/ 271) edges from 4, (@) edges from B, and [r]([r] —1) edges between A and
B. Hence e(N(x)) = (%;1) + 3(@) > (3).
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The following proposition gives the sizes of G, Ga, and Gj.

Proposition 9. Suppose n € N, t,7 > 0 satisfy 5 —1 <t <n—1 and . If all n/2,t,r
are integers, then e(G1) = f(t) and e(G2) = f(n/2 +r — 1), otherwise e(G1) < f(t) +n and
e(Ge) < f(n/2+1r—1)+n/2. Furthermore, e(G4) = f(n/2+r —1) + O(n) when r',r = Q(n).

Proof. First, by the definition of f(x), it is easy to see that

(6) )= (5) ~ =102

(alternatively when t € Z, we can apply Proposition [7| by letting vy be any vertex not in the
intersection of the two cliques). We know that

(6= (3) - t-1-12 = (5) - n-1-0% = 10
and equality holds when ¢ € Z. In addition, we have e¢(G1) < f(t) + n because
(n=1-Tt])?=(n—1-1)=@2n—-1) ([t +1)([t] =t) <n

by using t +1> [t] >t >n/2 — 1.
Second, using the definitions of f(x) and r, it is not hard to see that

(™) FG+r=1)=3(5+r-1).
It follows that
G(G2)=g(g+m—1) Sf(%+r—1)+g

and equality holds when r € Z.
Third, it is easy to see that

() =" (";1+[7~'1—1).

!

By the definitions of r and r’, we have () — (}) = 2277, When r,7’ = Q(n), we have r’ —r = O(1)
and consequently,

Gy -1 (3r-1) <5 (P =1) =G (54 -)

2

= O(n). O
We compare f(t), the approximate size of G'1, with f(§ +r — 1), the approximate size of G

and GY, in the next proposition.

Proposition 10. Suppose 5 —1 <t <n—1, f(x) andr are defined in (3) and , respectively.

We have f(t) < f(5 +7—1) if and only if r +t < %", equivalently,

5 V5Tn? — 72n
<-n——— —1=0.62 .
(8) t < 1" B 0.6208n

To prove Proposition we need a simple fact on quadratic functions.

Fact 11. Suppose g(x) is a quadratic function with a mazimum at x = a and assume x1 < x3.
Then g(x1) < g(x2) if and only if x1 + x2 < 2a. O
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Proof of Proposition [10. First note that

3, 4n—-3 n? t 3
-2 - — “n—1
f(zx) 57 + 5 %5 + <2) tgn

is a quadratic function with a maximum at x = ?n % Second, since r < 7, it follows that

()= Ca )G Q () +56)- )

Consequently § +r—12>t. ByFactf [+ 1) if and only if ¢ 4 & +7"—1<——1
orr+1t< 5" . By . this is equivalent to

R TS (1) o (t+1)2 —§(t+1)n+7n+ >0,
2 2 )~ \2 6 27

which holds exactly when t +1 < 2n — 7W (because t < n). O
We are ready to prove Theorem [6}
Proof of Theorem [6 Assume that § = §(G). We separate two cases.

Case 1: r +t < %", equivalently, (8)).
First assume that 6 > %n —t—1. Since t < ‘%” —r, we have 6 > § + 7 — 1 and consequently,

e(G) zg(ngr—l) :f<g+r—1> > f(t)
by (7)) and Proposition |1
Second assume that 5 < 4n—t — 1. By Proposition l we have e(G) > f(d). Recall that
forces t < 4. Since t < < 3n —t—1and f(x) is a quadratic function maximized at %" -1
derive from Fact [11] that f(d) > f(t). Hence e(G) > f(6) > f(t).
Case 2: r+t > %”.

If6>%+r—1,then e(G) > 3(5 +r—1) = f(3 +r —1) by (7). Otherwise § < & +r — 1.
Note that

we

on 4n
5+2+r—1>t—|—2+r—1> : +2—1_ 7 L.
Since the quadratic function f(z) is maximized at 2* — %, we derive from Fact [11| that f(5) >
f(5+r—1). By Proposition we have e(G) > f(0) > f(5 +r —1).
By Proposition@, when n/2,t,r are all integers, we have e(G1) = f(t) and e(G2) = f(5+r—1).
In other cases, we have e(G1) < f(t) +n and e(G2) < f(§ + 7 —1) +n/2. When n is odd and
r+t>5n/6, we have r,r’ = Q(n) and thus e(G5) = f(5 +r—1) + O(n). O

Remark 12. When n/2,t,r are all integers, we actually learn the following about extremal
graphs from the proof of Theorem [0 Suppose that G is an extremal graph. We claim that
G = Gy whenr+1t<5n/6, and G is (n/2 + 7" — 1)-regular when r —|— t>5n/6,.

Indeed, first assume v+t < 5n/6. If 6 > 4 sn—t—1, then § > § +r — 1 and consequently,
e(G) > 5(5g+r—1)=f(t), a contmdzctwn Followmg the second case of Case 1, we obtain
that e(G) = f(6) = f(t) and consequently, § = t. Using Proposition [}, we can derive that
G = G1. When r+t > 5n/6, the second case of Case 2 shows that e(G) > f(6) > f(5 +r—1),
a contradiction. Thus § > 5 +r—1 and e(G) = 5(5 +r—1), which forces G to be (n/241r—1)-
regular.

We now prove Theorem [3| by applying Theorem [6]and the arguments that show the equivalence
of Problems 2] and Bl in Section 1.
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Proof of Theorem[3. Suppose 1/4 < d < 1 and n € N is sufficiently large. Choose ¢t € R such

that (£) = d(2). Since (V9") < d(2) < (Y1), we have Vdn < t < Vn + 1.

Suppose F is a triple system on n vertices with 6(F) > d(3). Let G = (V(F),dF) be the
graph whose edge set is the shadow dF. For every z € V(G), we have eg(N(z)) > d(5).
Case 1: %§d< 47%4\/?.

Thus L < Vd < 15_17%/? Since n is sufficiently large, we have Vdn < 15;5/?71 — 2. Since

2 —
Vidn < t < Vdn + 1, it follows that

n 15 — /57 5 BT _72n
L A LA I e L L
g SES T A 12

This allows us to apply the first case of Theorem |§| and @ to derive that

(@210 = (3) - =102 (3) = 00~ 1 Vanp?
—(4\/§—2d—1)<2> tn—dn—1

> (4Vd —2d —1) (;L) as d < 1 and n is sufficiently large.

Case 2: d > %ﬁ.
Thus Vd > 15_175/? Since t > v/dn, it follows that

15— v/ VBT =72
pe1s DT VOT = 57n+1>2n—757712 7

because V/57n2 — 72 > /57n2 — 6 for n > 2. Since fails, we will apply the second case of
Theorem @ Since (;) =d (g) and r > 0, we can obtain from that

r= é (3+\/3(n1)((4d1)n+5)> :%+%\/4d3_1 + h(n),

where

To see why these bounds are asymptotically tight, for every graph G € {G1,G2, G4}, we
construct a triple system JFg whose members are all triangles of G. Then 0Fg C E(G) and

3(Fa) = (5) = d(3)-
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Proposition@gives that |0Fq,| < e(G1) < f(t)+n. By () and the assumption t < vdn +1,
|0Fc, | < f(t +n<<> (n—2—+Vdn)? +
= (wd-2a-1) ( > ( 3—2vd— d)n—4+n

(o) () o

When n is even, we apply Proposition |§| and @ obtaining that

0Fas < e(Ga) < £ (5 —i—r—l)—i—Zz(Z) <;+ 4d1;1>+0(n).

When n is odd, we assume r + ¢ > 5n/6 and thus r,7’ = Q(n). By Proposition |§| and (9), we
conclude that

0Fcy| < e(Gh) = f (g +r— 1) +0(n) = (Z) (; + 4d1; 1) + O(n). O

We outline the proof of Corollary [ emphasizing how Theorem [3]is applied. In a 3-graph, the
degree of a pair p of vertices is the number of the edges that contains p.

Proof Outline of Corollary[fl Assume n < v and e = ~v/12. Let H be an n-vertex 3-graph and
x be a vertex of H. In order to find nn®t0*te=1 copies of K3 o it suffices to find 1(5) pairs
of vertices of H, with degree at lease 2n — this follows from standard counting arguments in
extremal (hyper)graph theory, or conveniently [16, Lemma 4.2] of Lo and Markstrom.

Suppose 81 (H) > (do + 7)(3) with dy = 6 — 4v/2 &~ 0.343. As shown in [9, Lemma 3.3], it
is easy to find a set Vj of at most 3en vertices and a subgraph H' of H on V \ Vj such that

5( " > do (”/) where n' = |V \ Vp|, and every pair in OH’ has degree at least ¢?n in H. Since
4 < dy < = 5‘ﬁ ~ 0.385, by the first case of Theorem we have

OH'| > ( 4ﬂ—2d0—1<> (4\f—2d0—1—><2>

For every vertex z € V(H), since d(z) > (do +v)(5) and crucially 4v/dy — 2dy — 1 = 1 — dy, at

least 'Y( ) pairs in H, are also in OH' thus having degree at lease £?n, as desired.

0

3. CONCLUDING REMARKS

Let us restate the & = 3 case of Problem [l

Problem 13. Let G be a graph on n vertices such that each vertex is contained in at least (;)
triangles, where t is a positive real number. How many edges must G have?

Our Theorem [6] (asymptotically) answers Problem [L3] for n/2 < t + 1 < n. The following
proposition shows that for larger n, all but O(t3) vertices of an extremal graph are contained in
isolated copies of Kyy.

Proposition 14. When n > (t+1)%(t +2)/4, every extremal graph for Pmblem contains an
isolated copy of Kii1.



SHADOWS OF 3-UNIFORM HYPERGRAPHS UNDER A MINIMUM DEGREE CONDITION 9

Proof. Let G = (V, E) be an extremal graph with |V| = n. Since every vertex lies in at least
(;) triangles, it suffices to show that G contains a vertex of degree ¢ and all of its neighbors also
have degree ¢ (thus inducing an isolated copy of Kyi1).

Suppose n = a(t + 1) + b, where 0 < b < t. Let G’ be the disjoint union of a — 1 copies of
K1 together with two copies of K;11 sharing ¢t + 1 — b vertices. Since G is extremal, we have

2¢(G) < 2e(G") =tn+ (t+1—b)b < tn+ (t+1)?/4.

Partition V(G) into A U B such that A consists of all vertices of degree greater than ¢ and B
consists of all vertices of degree exactly t. Then

D (da(v) —t) = (da(v) —t) = 2¢(G) — tn < (t +1)*/4.

vEA veV
This implies that |A| < (t + 1)2/4. Let e(A, B) denote the number of edges (of G) between A
and B. It follows that

1
(t+1)2 +t|A| < i 1)3.

| =

e(4,B) < 3 d(v) <

vEA
Let B’ consists of the vertices of B that are adjacent to some vertex of A. Then |B’| < e(A, B) <
(t+1)3/4. If n > (t + 1)2(t +2)/4, then n > |A| + |B’| and consequently, there exists a vertex
of B whose t neighbors are all in B, as desired. O

The t = 2 case of Problem [13] assumes that every vertex in an n-vertex graph is covered by
a triangle. Since 0(G) > 2, it follows that e(G) > n, which is best possible when 3 divides n.
Recently, Chakraborti and Loh [2] determined the minimum number of edges an n-vertex graph
in which every vertex is contained in a copy of K, for arbitrary s < n. Their extremal graph is
the union of copies of Ky, all but two of which are isolated.

Finally, using careful case analysis, we can answer Problem [13| exactly when ¢ is very close to
n. This falls into the r 4+ ¢ > 5n/6 case of Theorem [6] but G defined in Construction [§] is not
necessarily extremal (unless both r and n/2 are integers).

e When n =t + 2, the (unique) extremal graph is K, , the complete graph on n vertices
minus one edge.

e When n = t 4 3 is even, the (unique) extremal graph is K, minus a perfect matching
(provided ¢ > 5). When n = t+3is odd, K, minus a matching of size "T_l is an extremal
graph (provided t > 6).

e When n = t 4+ 4, the complement of any Ks-free 2-regular graph on n vertices is an
extremal graph. Note that r = n/2 — 2 in this case and thus Gy is one of the extremal

graphs when n is even.
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