SHADOWS OF 3-UNIFORM HYPERGRAPHS UNDER A MINIMUM DEGREE CONDITION

ZOLTÁN FÜREDI AND YI ZHAO

ABSTRACT. We prove a minimum degree version of the Kruskal–Katona theorem for triple systems: given $d \geq 1/4$ and a triple system \mathcal{F} on n vertices with minimum degree $\delta(\mathcal{F}) \geq d\binom{n}{2}$, we obtain asymptotically tight lower bounds for the size of its shadow. Equivalently, for $t \geq n/2 - 1$, we asymptotically determine the minimum size of a graph on n vertices, in which every vertex is contained in at least $\binom{t}{2}$ triangles. This can be viewed as a variant of the Rademacher–Turán problem.

1. INTRODUCTION

Given a set X and a family \mathcal{F} of k-subsets of X, the shadow $\partial \mathcal{F}$ of \mathcal{F} is the family of all (k-1)-subsets of X contained in some member of \mathcal{F} . The Kruskal–Katona theorem [12, 13] is one of the most important results in extremal set theory – it gives a tight lower bound for the size of shadows of all k-uniform families of a given size. The following is a version due to Lovász [17]. Note that it is tight when t is an integer by considering the family of all k-subsets of a set of t vertices.

Theorem 1 (Kruskal–Katona theorem). If \mathcal{F} is a family of k-sets with $|\mathcal{F}| \ge {t \choose k}$ for some real number t, then $|\partial \mathcal{F}| \ge {t \choose k-1}$.

A family \mathcal{F} of k-subsets of X is often regarded as a k-uniform hypergraph, or k-graph (X, \mathcal{F}) with X as the vertex set and \mathcal{F} as the edge set. For every $x \in X$, define $\mathcal{F}_x = \{F \setminus x : x \in F$ and $F \in \mathcal{F}\}$. The minimum (vertex) degree of \mathcal{F} is denoted by $\delta(\mathcal{F}) := \min_x |\mathcal{F}_x|$. The following minimum degree version of the Kruskal–Katona theorem has not been studied before but emerged naturally when Han, Zang, and Zhao [9] investigated a packing problem for 3graphs.

Problem 2. Given $k \ge 3$ and 0 < d < 1, let X be a set of n vertices and \mathcal{F} be a family of k-subsets of X with $\delta(\mathcal{F}) \ge d\binom{n}{k-1}$.¹ How small can $|\partial \mathcal{F}|$ be?

Problem 2 belongs to an area of active research on extremal problems under maximum or minimum degree conditions. Two early examples are the work of Bollobás, Daykin, and Erdős [1], who studied the minimum degree version of the Erdős matching conjecture, and of Frankl [6], who studied the Erdős–Ko–Rado theorem under maximum degree conditions. More recent examples include the minimum (co)degree Turán's problems [15, 18], the minimum degree version of the Erdős–Ko–Rado theorem [8, 10, 14], and the minimum degree version of Hilton–Milner

Date: October 1, 2021.

²⁰¹⁰ Mathematics Subject Classification. 05D05, 05C65, 05C35.

Key words and phrases. shadow, hypergraph, Kruskal–Katona theorem, Rademacher–Turán.

Zoltán Füredi is partially supported by NKFIH grant KH130371 and NKFI-133819. Yi Zhao is partially supported by NSF grants DMS 1400073 and 1700622 and Simons Collaboration Grant 710094.

¹ It is more natural to assume $\delta(\mathcal{F}) \geq d\binom{n-1}{k-1}$ as $\binom{n-1}{k-1}$ is the largest possible degree. However, since we are mainly interested in the asymptotics of $|\partial \mathcal{F}|$, we choose the simpler looking condition $\delta(\mathcal{F}) \geq d\binom{n}{k-1}$.

theorem [7, 14]. Recently Jung and Katona [11] studied minimum $|\partial \mathcal{F}|/|\mathcal{F}|$ among all k-graphs \mathcal{F} with maximum degree $\Delta(\mathcal{F}) \leq d$.

Since $\delta(\mathcal{F}) \geq d\binom{n}{k-1}$ implies that $|\mathcal{F}| \geq d\binom{n}{k}$, we could apply Theorem 1 to \mathcal{F} but will not obtain a tight bound for $|\partial \mathcal{F}|$. A better approach is applying Theorem 1 to \mathcal{F}_x for each vertex x. Since $|\mathcal{F}_x| \geq d\binom{n}{k-1} \geq \binom{d^{\frac{1}{k-1}n}}{k-1}$, by Theorem 1, we have $|\partial \mathcal{F}_x| \geq \binom{d^{\frac{1}{k-1}n}}{k-2} \geq d^{\frac{k-2}{k-1}}\binom{n}{k-2} + O(n^{k-3})$. Consequently,

(1)
$$|\partial \mathcal{F}| = \sum_{x} \frac{|\partial \mathcal{F}_{x}|}{k-1} \ge \frac{n}{k-1} d^{\frac{k-2}{k-1}} \binom{n}{k-2} + O(n^{k-2}) \ge d^{\frac{k-2}{k-1}} \binom{n}{k-1} + O(n^{k-2}).$$

This bound is tight (up to the error term) when the first inequality in (1) is asymptotically an equality, which occurs when \mathcal{F}_x is a clique of order $d^{\frac{1}{k-1}}n$ for every x. Thus, the bound in (1) is asymptotically tight when \mathcal{F} consists of $d^{\frac{1}{1-k}}$ vertex-disjoint cliques of order $d^{\frac{1}{k-1}}n$, in particular, when $d = \ell^{1-k}$ for some $\ell \in \mathbb{N}$.

In this paper we improve (1) and answer Problem 2 asymptotically for k = 3 and $d \ge 1/4$. Two overlapping cliques of order about $\sqrt{dn} + 1$ is a natural candidate for extremal hypergraphs – the following theorem confirms this for $\frac{1}{4} \le d < \frac{47-5\sqrt{57}}{24} \approx 0.385$. However, there is a different extremal hypergraph for larger values of d.

Theorem 3. Let $1/4 \leq d < 1$ and $n \in \mathbb{N}$ be sufficiently large. If \mathcal{F} is a triple system on n vertices with $\delta(\mathcal{F}) \geq d\binom{n}{2}$, then

$$|\partial \mathcal{F}| \ge \begin{cases} \left(4\sqrt{d} - 2d - 1\right) \binom{n}{2} & \text{if } \frac{1}{4} \le d < \frac{47 - 5\sqrt{57}}{24} \\ \left(\frac{1}{2} + \sqrt{\frac{4d - 1}{12}}\right) \binom{n}{2} & \text{if } d \ge \frac{47 - 5\sqrt{57}}{24}. \end{cases}$$

These bounds are best possible up to an additive term of O(n).

Although seemingly technical, Theorem 3 has an interesting application on 3-graph packing and covering. Given positive integers a, b, c, let $K^3_{a,b,c}$ denote the complete 3-partite 3-graph with parts of size a, b, and c. Answering a question of Mycroft [19], Han, Zang, and Zhao [9] determined the minimum $\delta(H)$ of a 3-graph H that forces a perfect $K^3_{a,b,c}$ -packing in H for any given a, b, c.² One of the main steps in their proof is determining the smallest $\delta(H)$ of a 3-graph H that guarantees that every vertex of H is covered by a copy of $K^3_{a,b,c}$ (this is necessary for Hcontaining a perfect $K^3_{a,b,c}$ -packing).

Corollary 4. [9, Lemma 3.7] Let $d_0 = 6 - 4\sqrt{2} \approx 0.343$. For any $\gamma > 0$, there exists $\eta > 0$ such that the following holds for sufficiently large n. If H is an n-vertex 3-graph with $\delta(H) \ge (d_0 + \gamma) \binom{n}{2}$, then each vertex of H is contained in at least $\eta n^{a+b+c-1}$ copies of $K^3_{a,b,c}$.

It was shown [9, Construction 2.6] that d_0 in Corollary 4 is best possible. A proof of Corollary 4 can be found in [9] – we give a proof outline at the end of Section 2.

Our approach towards Theorem 3 is viewing it as an extremal problem on graphs. The following is an equivalent form of Problem 2, in which K_t^k denotes the complete k-graph on t vertices (and we omit the superscript when k = 2).

Problem 5. Given a (k-1)-graph G on n vertices such that every vertex is contained in at least $d\binom{n}{k-1}$ copies of K_k^{k-1} , how many edges must G have?

² Given hypergraphs H and F, a perfect F-packing in H is a spanning subgraph of H that consists of vertexdisjoint copies of F.

To see why Problems 2 and 5 are equivalent, let m_1 be the minimum $|\partial \mathcal{F}|$ for Problem 2 and m_2 be the minimum e(G) for Problem 5. To see why $m_1 \geq m_2$, consider a k-uniform family \mathcal{F} with $\delta(\mathcal{F}) \geq d\binom{n}{k-1}$. Let $G = (V(\mathcal{F}), \partial \mathcal{F})$ be the (k-1)-graph of its shadow. Since every member of \mathcal{F} gives rise to a copy of K_k^{k-1} in G, $\delta(\mathcal{F}) \geq d\binom{n}{k-1}$ implies that every vertex is contained in at least $d\binom{n}{k-1}$ copies of K_k^{k-1} . Thus $|\partial \mathcal{F}| = e(G) \geq m_2$. To see why $m_2 \geq m_1$, consider a (k-1)-graph G such that every vertex is contained in at least $d\binom{n}{k-1}$ copies of K_k^{k-1} . Thus $|\partial \mathcal{F}| = e(G) \geq m_2$. To see why $m_2 \geq m_1$, consider a (k-1)-graph G such that every vertex is contained in at least $d\binom{n}{k-1}$ copies of K_k^{k-1} . Let \mathcal{F} be the family of k-subsets of V(G) that span copies of K_k^{k-1} in G. Then $\partial \mathcal{F} \subseteq G$ and for every $v \in V(G)$, we have $|\mathcal{F}_v| \geq d\binom{n}{k-1}$. Thus $e(G) \geq |\partial \mathcal{F}| \geq m_1$ as desired.

In order to prove Theorem 3, we solve the k = 3 case of Problem 5 with $d \ge 1/4$. For convenience, we assume that every vertex of G is contained in at least $\binom{t}{2}$ triangles. There are essentially two *extremal graphs*: the first one consists of two copies of K_{t+1} that share 2t + 2 - nvertices; the second one is obtained from two disjoint copies of $K_{n/2}$ by adding a regular bipartite graph between them. The size of these two extremal graphs can be conveniently represented by a quadratic function f(x), which arises naturally from a lower bound for e(G) in Proposition 7.

Theorem 6. Let $n \in \mathbb{N}$, $t, r \in \mathbb{R}$ such that $n/2 \leq t+1 \leq n, r \geq 0$, and

(2)
$$\binom{\frac{n}{2}-1}{2} + 3\binom{r}{2} = \binom{t}{2}.$$

Define a function $f : \mathbb{R} \to \mathbb{R}$ as

(3)
$$f(x) = {t \choose 2} + x(n-x) - {n-x-1 \choose 2}$$

If G is an n-vertex graph such that each vertex is contained in at least $\binom{t}{2}$ triangles, then

(4)
$$e(G) \ge \begin{cases} f(t) & \text{if } r+t \le \frac{5n}{6} \text{ or approximately } t \le 0.6208n \\ f(\frac{n}{2}+r-1) & \text{otherwise.} \end{cases}$$

Furthermore, these bounds are tight when n/2, t, r are integers, and tight up to an additive O(n) in general.

Theorem 6 can be viewed as a variant of the well-studied Rademacher–Turán problem. Starting with the work of Rademacher (unpublished) and of Erdős [4], the Rademacher–Turán problem studies the minimum number of triangles in a graph with given order and size. Instead of the total number of triangles in a graph, one may ask for the maximum or minimum number of triangles containing a fixed vertex. Given a graph G, we define the triangle-degree of a vertex as the number of triangles that contain this vertex. Let $\Delta_{K_3}(G)$ and $\delta_{K_3}(G)$ denote the maximum and minimum triangle-degree in G, respectively. The contrapositive of Theorem 6 states that if G is a graph on n vertices that fails (4), then $\delta_{K_3}(G) < {t \choose 2}$. Correspondingly, the maximum triangle-degree version of Rademacher–Turán problem was recently studied by Falgas-Ravry, Markström, and Zhao [5]. In addition, Theorem 6 looks similar to the question of Erdős and Rothschild [3] on the book size of graphs: in the complementary form, it asks for the maximum size of a graph on n vertices, in which every edge is contained in at most d triangles.

We prove Theorem 6 and Theorem 3 in the next section. When t < n/2 - 1, it is reasonable to speculate that an extremal graph is a disjoint union of copies of K_{t+1} and an extremal graph for Theorem 6. Unfortunately we cannot verify this. We provide some evidence for this speculation in the last section.

Notation. Given a family \mathcal{F} of sets, $|\mathcal{F}|$ is the size of \mathcal{F} , namely, the number of sets in \mathcal{F} . A k-uniform hypergraph H, or k-graph, consists of a vertex set V(H) and an edge set E(H), which is a family of k-subsets of V(H). Given a vertex set S, denote by $e_H(S)$ the number of edges of H induced on S. Suppose G is a graph. For a vertex $v \in V(G)$, let $N_G(v)$ denote the *neighborhood* of v, the set of vertices adjacent to v, and let $d_G(v) = |N_G(v)|$ be the degree of v. Let $N_G[v] := N_G(v) \cup \{v\}$ denote the *closed neighborhood* of v. When the underlying (hyper)graph is clear from the context, we omit the subscript in these notations.

2. Proofs of Theorem 6 and Thereom 3

Suppose that G = (V, E) is a graph on *n* vertices such that each vertex is contained in at least $\binom{t}{2}$ triangles, in other words,

(5)
$$\forall v \in V, \quad e(N(v)) \ge {t \choose 2},$$

where t is a positive real number. Trivially $t \leq \delta(G) \leq n-1$ because $e(N(v)) \leq {\binom{d(v)}{2}}$ for every vertex $v \in V$. Therefore

$$e(G) \ge \frac{\delta(G)n}{2} \ge \frac{tn}{2}.$$

When t + 1 divides n, this bound is tight because G can be a disjoint union of $\frac{n}{t+1}$ copies of K_{t+1} . Below we often assume that $t \le n-2$ because when t = n-1, we must have $G = K_n$.

Let us derive another lower bound for e(G) by using the function f defined in (3).

Proposition 7. If G = (V, E) is a graph on n vertices satisfying (5), then $e(G) \ge f(\delta(G))$, and the equality holds if and only if there exists $v_0 \in V$ such that $e(N(v_0)) = {t \choose 2}$, $d(v) = \delta(G)$ for all $v \notin N(v_0)$, and $V \setminus N[v_0]$ induces a clique.

Proof. Suppose $\delta(G) = \delta$ and $v_0 \in V$ satisfies $d(v_0) = \delta$. Since we may partition E(G) into the edges induced on $N(v_0)$ and the edges incident to some vertex $v \notin N(v_0)$, we have

$$e(G) = e(N(v_0)) + \left(\sum_{v \notin N(v_0)} d(v)\right) - e(V \setminus N(v_0)).$$

Because of (5), $d(v) \geq \delta$ for all $v \notin N(v_0)$, and $e(V \setminus N(v_0)) \leq {\binom{n-\delta-1}{2}}$ (note that v_0 has no neighbor outside $N(v_0)$), we derive that $e(G) \geq {t \choose 2} + \delta(n-\delta) - {\binom{n-\delta-1}{2}}$, and equality holds exactly when $e(N(v_0)) = {t \choose 2}$, $d(v) = \delta(G)$ for all $v \notin N(v_0)$, and $V \setminus N[v_0]$ induces a clique. \Box

Let us construct three graphs satisfying (5). Note that, if r satisfies (2), then $r \leq n/2$ because $\binom{n/2-1}{2} + 3\binom{n/2}{2} = \binom{n-1}{2} \geq \binom{t}{2}$.

Construction 8. Suppose $t, r \in \mathbb{R}$ satisfy $\frac{n}{2} - 1 \le t \le n - 2$, $r \ge 0$, and (2).

- (1) Let G_1 be the union of two copies of $K_{\lceil t \rceil+1}$ sharing $2\lceil t \rceil + 2 n$ vertices.
- (2) When n is even, let G_2 be the n-vertex graph obtained from two disjoint copies of $K_{n/2}$ by adding an $\lceil r \rceil$ -regular bipartite graph between two cliques.
- (3) When n is odd, let r' ∈ ℝ⁺ satisfy (ⁿ⁻³/₂) + 3(^{r'}₂) = (^t/₂). Let G'₂ be the n-vertex graph obtained from two disjoint copies of K_{(n-1)/2} by adding an [r']-regular bipartite graph between them, and a new vertex whose adjacency is the exactly the same as one of the existing vertices.

It is easy to see that G_1, G_2, G'_2 all satisfy (5). For example, consider a vertex $x \in V(G_2)$. Let A and B denote the vertex sets of the two copies of $K_{n/2}$ of G_2 and assume $x \in A$. Then N(x) contains $\binom{n/2-1}{2}$ edges from A, $\binom{\lceil r \rceil}{2}$ edges from B, and $\lceil r \rceil (\lceil r \rceil - 1)$ edges between A and B. Hence $e(N(x)) = \binom{\frac{n}{2}-1}{2} + 3\binom{\lceil r \rceil}{2} \ge \binom{t}{2}$. The following proposition gives the sizes of G_1, G_2 , and G'_2 .

Proposition 9. Suppose $n \in \mathbb{N}$, $t, r \geq 0$ satisfy $\frac{n}{2} - 1 \leq t \leq n - 1$ and (2). If all n/2, t, r are integers, then $e(G_1) = f(t)$ and $e(G_2) = f(n/2 + r - 1)$, otherwise $e(G_1) \leq f(t) + n$ and $e(G_2) \leq f(n/2 + r - 1) + n/2$. Furthermore, $e(G'_2) = f(n/2 + r - 1) + O(n)$ when $r', r = \Omega(n)$.

Proof. First, by the definition of f(x), it is easy to see that

(6)
$$f(t) = \binom{n}{2} - (n-1-t)^2$$

(alternatively when $t \in \mathbb{Z}$, we can apply Proposition 7 by letting v_0 be any vertex not in the intersection of the two cliques). We know that

$$e(G_1) = \binom{n}{2} - (n-1-\lceil t \rceil)^2 \ge \binom{n}{2} - (n-1-t)^2 = f(t)$$

and equality holds when $t \in \mathbb{Z}$. In addition, we have $e(G_1) \leq f(t) + n$ because

$$(n-1-\lceil t \rceil)^2 - (n-1-t)^2 = (2(n-1)-(\lceil t \rceil+t))(\lceil t \rceil-t) \le n$$

by using $t + 1 \ge \lceil t \rceil \ge t \ge n/2 - 1$.

Second, using the definitions of f(x) and r, it is not hard to see that

(7)
$$f\left(\frac{n}{2} + r - 1\right) = \frac{n}{2}\left(\frac{n}{2} + r - 1\right).$$

It follows that

$$e(G_2) = \frac{n}{2} \left(\frac{n}{2} + \lceil r \rceil - 1 \right) \le f\left(\frac{n}{2} + r - 1 \right) + \frac{n}{2}$$

and equality holds when $r \in \mathbb{Z}$.

Third, it is easy to see that

$$e(G'_2) = \frac{n+1}{2} \left(\frac{n-1}{2} + \lceil r' \rceil - 1 \right)$$

By the definitions of r and r', we have $\binom{r'}{2} - \binom{r}{2} = \frac{2n-7}{24}$. When $r, r' = \Omega(n)$, we have r' - r = O(1) and consequently,

$$e(G'_2) - f\left(\frac{n}{2} + r - 1\right) \le \frac{n+1}{2} \left(\frac{n-1}{2} + r' - 1\right) - \frac{n}{2} \left(\frac{n}{2} + r - 1\right)$$
$$= \frac{n}{2} (r' - r) + \frac{r'}{2} - \frac{3}{4} = O(n).$$

We compare f(t), the approximate size of G_1 , with $f(\frac{n}{2} + r - 1)$, the approximate size of G_2 and G'_2 , in the next proposition.

Proposition 10. Suppose $\frac{n}{2} - 1 \le t \le n - 1$, f(x) and r are defined in (3) and (2), respectively. We have $f(t) \le f(\frac{n}{2} + r - 1)$ if and only if $r + t \le \frac{5n}{6}$, equivalently,

(8)
$$t \le \frac{5}{4}n - \frac{\sqrt{57n^2 - 72n}}{12} - 1 \approx 0.6208n$$

To prove Proposition 10, we need a simple fact on quadratic functions.

Fact 11. Suppose g(x) is a quadratic function with a maximum at x = a and assume $x_1 \le x_2$. Then $g(x_1) \le g(x_2)$ if and only if $x_1 + x_2 \le 2a$. *Proof of Proposition 10.* First note that

$$f(x) = -\frac{3}{2}x^2 + \frac{4n-3}{2}x - \frac{n^2}{2} + \binom{t}{2} + \frac{3}{2}n - 1$$

is a quadratic function with a maximum at $x = \frac{2n}{3} - \frac{1}{2}$. Second, since $r \leq \frac{n}{2}$, it follows that

$$\binom{\frac{n}{2}+r-1}{2} = \binom{\frac{n}{2}-1}{2} + \binom{n}{2}-1r + \binom{r}{2} \ge \binom{\frac{n}{2}-1}{2} + 3\binom{r}{2} = \binom{t}{2}.$$

Consequently $\frac{n}{2} + r - 1 \ge t$. By Fact 11, $f(t) \le f(\frac{n}{2} + r - 1)$ if and only if $t + \frac{n}{2} + r - 1 \le \frac{4n}{3} - 1$ or $r+t \leq \frac{5n}{6}$. By (2), this is equivalent to

$$\binom{\frac{n}{2}-1}{2} + 3\binom{\frac{5n}{6}-t}{2} \ge \binom{t}{2} \quad \text{or} \quad (t+1)^2 - \frac{5}{2}(t+1)n + \frac{7}{6}n^2 + \frac{n}{2} \ge 0,$$

which holds exactly when $t + 1 \leq \frac{5}{4}n - \frac{\sqrt{5}n^2 - 12n}{12}$ (because t < n).

We are ready to prove Theorem 6.

Proof of Theorem 6. Assume that $\delta = \delta(G)$. We separate two cases.

Case 1: $r + t \leq \frac{5n}{6}$, equivalently, (8). First assume that $\delta \geq \frac{4}{3}n - t - 1$. Since $t \leq \frac{5n}{6} - r$, we have $\delta \geq \frac{n}{2} + r - 1$ and consequently,

$$e(G) \ge \frac{n}{2} \left(\frac{n}{2} + r - 1\right) = f\left(\frac{n}{2} + r - 1\right) \ge f(t)$$

by (7) and Proposition 10.

Second assume that $\delta < \frac{4}{3}n - t - 1$. By Proposition 7, we have $e(G) \ge f(\delta)$. Recall that (5) forces $t \leq \delta$. Since $t \leq \delta < \frac{4}{3}n - t - 1$ and f(x) is a quadratic function maximized at $\frac{2n}{3} - \frac{1}{2}$, we derive from Fact 11 that $f(\delta) \ge f(t)$. Hence $e(G) \ge f(\delta) \ge f(t)$.

Case 2: $r + t > \frac{5n}{6}$. If $\delta \ge \frac{n}{2} + r - 1$, then $e(G) \ge \frac{n}{2}(\frac{n}{2} + r - 1) = f(\frac{n}{2} + r - 1)$ by (7). Otherwise $\delta < \frac{n}{2} + r - 1$. Note that

$$\delta + \frac{n}{2} + r - 1 \ge t + \frac{n}{2} + r - 1 > \frac{5n}{6} + \frac{n}{2} - 1 = \frac{4n}{3} - 1.$$

Since the quadratic function f(x) is maximized at $\frac{2n}{3} - \frac{1}{2}$, we derive from Fact 11 that $f(\delta) \ge f(\frac{n}{2} + r - 1)$. By Proposition 7, we have $e(G) \ge f(\delta) \ge f(\frac{n}{2} + r - 1)$.

By Proposition 9, when n/2, t, r are all integers, we have $e(G_1) = f(t)$ and $e(G_2) = f(\frac{n}{2}+r-1)$. In other cases, we have $e(G_1) \leq f(t) + n$ and $e(G_2) \leq f(\frac{n}{2} + r - 1) + n/2$. When n is odd and r + t > 5n/6, we have $r, r' = \Omega(n)$ and thus $e(G'_2) = f(\frac{n}{2} + r - 1) + O(n)$.

Remark 12. When n/2, t, r are all integers, we actually learn the following about extremal graphs from the proof of Theorem 6. Suppose that G is an extremal graph. We claim that $G = G_1$ when r + t < 5n/6, and G is (n/2 + r - 1)-regular when r + t > 5n/6,.

Indeed, first assume r + t < 5n/6. If $\delta \ge \frac{4}{3}n - t - 1$, then $\delta > \frac{n}{2} + r - 1$ and consequently, $e(G) > \frac{n}{2}(\frac{n}{2} + r - 1) = f(t)$, a contradiction. Following the second case of Case 1, we obtain that $e(\overline{G}) = f(\delta) = f(t)$ and consequently, $\delta = t$. Using Proposition 7, we can derive that $G = G_1$. When r + t > 5n/6, the second case of Case 2 shows that $e(G) \ge f(\delta) > f(\frac{n}{2} + r - 1)$, a contradiction. Thus $\delta \geq \frac{n}{2} + r - 1$ and $e(G) = \frac{n}{2}(\frac{n}{2} + r - 1)$, which forces G to be (n/2 + r - 1)regular.

We now prove Theorem 3 by applying Theorem 6 and the arguments that show the equivalence of Problems 2 and 5 in Section 1.

Proof of Theorem 3. Suppose $1/4 \leq d < 1$ and $n \in \mathbb{N}$ is sufficiently large. Choose $t \in \mathbb{R}^+$ such that $\binom{t}{2} = d\binom{n}{2}$. Since $\binom{\sqrt{d}n}{2} < \binom{\sqrt{d}n+1}{2}$, we have $\sqrt{d}n < t < \sqrt{d}n + 1$. Suppose \mathcal{F} is a triple system on n vertices with $\delta(\mathcal{F}) \ge d\binom{n}{2}$. Let $G = (V(\mathcal{F}), \partial \mathcal{F})$ be the

graph whose edge set is the shadow $\partial \mathcal{F}$. For every $x \in V(G)$, we have $e_G(N(x)) \ge d\binom{n}{2}$.

Case 1: $\frac{1}{4} \le d < \frac{47-5\sqrt{57}}{24}$. Thus $\frac{1}{2} \le \sqrt{d} < \frac{15-\sqrt{57}}{12}$. Since *n* is sufficiently large, we have $\sqrt{dn} \le \frac{15-\sqrt{57}}{12}n - 2$. Since $\sqrt{dn} < t < \sqrt{dn} + 1$, it follows that

$$\frac{n}{2} < t < \frac{15 - \sqrt{57}}{12}n - 1 < \frac{5}{4}n - \frac{\sqrt{57n^2 - 72n}}{12} - 1$$

This allows us to apply the first case of Theorem 6 and (6) to derive that

$$e(G) \ge f(t) = \binom{n}{2} - (n-1-t)^2 \ge \binom{n}{2} - (n-1-\sqrt{d}n)^2$$

= $(4\sqrt{d} - 2d - 1)\binom{n}{2} + n - dn - 1$
 $\ge (4\sqrt{d} - 2d - 1)\binom{n}{2}$ as $d < 1$ and n is sufficiently large.

Case 2: $d \ge \frac{47-5\sqrt{57}}{24}$. Thus $\sqrt{d} \geq \frac{15-\sqrt{57}}{12}$. Since $t > \sqrt{dn}$, it follows that

$$t+1 > \frac{15 - \sqrt{57}}{12}n + 1 > \frac{5}{4}n - \frac{\sqrt{57n^2 - 72}}{12}$$

because $\sqrt{57n^2 - 72} > \sqrt{57n^2} - 6$ for $n \ge 2$. Since (8) fails, we will apply the second case of Theorem 6. Since $\binom{t}{2} = d\binom{n}{2}$ and $r \ge 0$, we can obtain from (2) that

$$r = \frac{1}{6} \left(3 + \sqrt{3(n-1)\left((4d-1)n+5\right)} \right) = \frac{1}{2} + \frac{n}{2} \sqrt{\frac{4d-1}{3}} + h(n),$$

where

$$h(n) = \frac{1}{2\sqrt{3}} \left(\sqrt{(4d-1)n^2 + (6-4d)n - 5} - \sqrt{4d-1n} \right).$$

It is easy to see that $0 \le h(n) = O(1)$. Theorem 6 thus gives that

(9)

$$e(G) \ge f\left(\frac{n}{2} + r - 1\right) = \frac{n}{2}\left(\frac{n}{2} + r - 1\right)$$

$$= \frac{n}{2}\left(\frac{n}{2} - \frac{1}{2} + \frac{n}{2}\sqrt{\frac{4d - 1}{3}} + h(n)\right)$$

$$= \binom{n}{2}\left(\frac{1}{2} + \sqrt{\frac{4d - 1}{12}}\right) + \frac{n}{4}\sqrt{\frac{4d - 1}{3}} + \frac{n}{2}h(n)$$

$$\ge \binom{n}{2}\left(\frac{1}{2} + \sqrt{\frac{4d - 1}{12}}\right).$$

To see why these bounds are asymptotically tight, for every graph $G \in \{G_1, G_2, G'_2\}$, we construct a triple system \mathcal{F}_G whose members are all triangles of G. Then $\partial \mathcal{F}_G \subseteq E(G)$ and $\delta(\mathcal{F}_G) \ge {t \choose 2} = d{n \choose 2}.$

Proposition 9 gives that $|\partial \mathcal{F}_{G_1}| \leq e(G_1) \leq f(t) + n$. By (6) and the assumption $t \leq \sqrt{dn} + 1$,

$$\begin{aligned} |\partial \mathcal{F}_{G_1}| &\leq f(t) + n \leq \binom{n}{2} - (n - 2 - \sqrt{dn})^2 + n \\ &= \left(4\sqrt{d} - 2d - 1\right)\binom{n}{2} + \left(3 - 2\sqrt{d} - d\right)n - 4 + n \\ &= \left(4\sqrt{d} - 2d - 1\right)\binom{n}{2} + O(n). \end{aligned}$$

When n is even, we apply Proposition 9 and (9) obtaining that

$$|\partial \mathcal{F}_{G_2}| \le e(G_2) \le f\left(\frac{n}{2} + r - 1\right) + \frac{n}{2} = \binom{n}{2}\left(\frac{1}{2} + \sqrt{\frac{4d - 1}{12}}\right) + O(n).$$

When n is odd, we assume r + t > 5n/6 and thus $r, r' = \Omega(n)$. By Proposition 9 and (9), we conclude that

$$|\partial \mathcal{F}_{G'_2}| \le e(G'_2) = f\left(\frac{n}{2} + r - 1\right) + O(n) = \binom{n}{2}\left(\frac{1}{2} + \sqrt{\frac{4d - 1}{12}}\right) + O(n).$$

We outline the proof of Corollary 4 emphasizing how Theorem 3 is applied. In a 3-graph, the *degree* of a pair p of vertices is the number of the edges that contains p.

Proof Outline of Corollary 4. Assume $\eta \ll \gamma$ and $\varepsilon = \gamma/12$. Let H be an n-vertex 3-graph and x be a vertex of H. In order to find $\eta n^{a+b+c-1}$ copies of $K^3_{a,b,c}$, it suffices to find $\frac{\gamma}{2} \binom{n}{2}$ pairs of vertices of H_x with degree at lease $\varepsilon^2 n$ – this follows from standard counting arguments in extremal (hyper)graph theory, or conveniently [16, Lemma 4.2] of Lo and Markström.

Suppose $\delta_1(H) \ge (d_0 + \gamma) \binom{n}{2}$ with $d_0 = 6 - 4\sqrt{2} \approx 0.343$. As shown in [9, Lemma 3.3], it is easy to find a set V_0 of at most $3\varepsilon n$ vertices and a subgraph H' of H on $V \setminus V_0$ such that $\delta(H') \ge d_0\binom{n'}{2}$, where $n' = |V \setminus V_0|$, and every pair in $\partial H'$ has degree at least $\varepsilon^2 n$ in H. Since $\frac{1}{4} < d_0 < \frac{47-5\sqrt{57}}{24} \approx 0.385$, by the first case of Theorem 3, we have

$$|\partial H'| \ge (4\sqrt{d_0} - 2d_0 - 1)\binom{n'}{2} \ge \left(4\sqrt{d_0} - 2d_0 - 1 - \frac{\gamma}{2}\right)\binom{n}{2}.$$

For every vertex $x \in V(H)$, since $d(x) \ge (d_0 + \gamma) \binom{n}{2}$ and crucially $4\sqrt{d_0} - 2d_0 - 1 = 1 - d_0$, at least $\frac{\gamma}{2} \binom{n}{2}$ pairs in H_x are also in $\partial H'$ thus having degree at lease $\varepsilon^2 n$, as desired.

3. Concluding Remarks

Let us restate the k = 3 case of Problem 5.

Problem 13. Let G be a graph on n vertices such that each vertex is contained in at least $\binom{t}{2}$ triangles, where t is a positive real number. How many edges must G have?

Our Theorem 6 (asymptotically) answers Problem 13 for $n/2 \leq t+1 \leq n$. The following proposition shows that for larger n, all but $O(t^3)$ vertices of an extremal graph are contained in isolated copies of K_{t+1} .

Proposition 14. When $n > (t+1)^2(t+2)/4$, every extremal graph for Problem 13 contains an isolated copy of K_{t+1} .

Proof. Let G = (V, E) be an extremal graph with |V| = n. Since every vertex lies in at least $\binom{t}{2}$ triangles, it suffices to show that G contains a vertex of degree t and all of its neighbors also have degree t (thus inducing an isolated copy of K_{t+1}).

Suppose n = a(t+1) + b, where $0 < b \le t$. Let G' be the disjoint union of a - 1 copies of K_{t+1} together with two copies of K_{t+1} sharing t + 1 - b vertices. Since G is extremal, we have

$$2e(G) \le 2e(G') = tn + (t+1-b)b \le tn + (t+1)^2/4.$$

Partition V(G) into $A \cup B$ such that A consists of all vertices of degree greater than t and B consists of all vertices of degree exactly t. Then

$$\sum_{v \in A} (d_G(v) - t) = \sum_{v \in V} (d_G(v) - t) = 2e(G) - tn \le (t+1)^2/4.$$

This implies that $|A| \leq (t+1)^2/4$. Let e(A, B) denote the number of edges (of G) between A and B. It follows that

$$e(A,B) \le \sum_{v \in A} d(v) \le \frac{1}{4}(t+1)^2 + t|A| \le \frac{1}{4}(t+1)^3.$$

Let B' consists of the vertices of B that are adjacent to some vertex of A. Then $|B'| \le e(A, B) \le (t+1)^3/4$. If $n > (t+1)^2(t+2)/4$, then n > |A| + |B'| and consequently, there exists a vertex of B whose t neighbors are all in B, as desired.

The t = 2 case of Problem 13 assumes that every vertex in an *n*-vertex graph is covered by a triangle. Since $\delta(G) \ge 2$, it follows that $e(G) \ge n$, which is best possible when 3 divides *n*. Recently, Chakraborti and Loh [2] determined the minimum number of edges an *n*-vertex graph in which every vertex is contained in a copy of K_s , for arbitrary $s \le n$. Their extremal graph is the union of copies of K_s , all but two of which are isolated.

Finally, using careful case analysis, we can answer Problem 13 *exactly* when t is very close to n. This falls into the r + t > 5n/6 case of Theorem 6 but G_2 defined in Construction 8 is not necessarily extremal (unless both r and n/2 are integers).

- When n = t + 2, the (unique) extremal graph is K_n^- , the complete graph on n vertices minus one edge.
- When n = t + 3 is even, the (unique) extremal graph is K_n minus a perfect matching (provided t > 5). When n = t + 3 is odd, K_n minus a matching of size $\frac{n-1}{2}$ is an extremal graph (provided t > 6).
- When n = t + 4, the complement of any K_3 -free 2-regular graph on n vertices is an extremal graph. Note that r = n/2 2 in this case and thus G_2 is one of the extremal graphs when n is even.

Acknowledgment

The authors thank Guantao Chen and Po-Shen Loh for valuable discussions.

References

- B. Bollobás, D. E. Daykin, and P. Erdős. Sets of independent edges of a hypergraph. Quart. J. Math. Oxford Ser. (2), 27(105):25–32, 1976.
- [2] D. Chakraborti and P.-S. Loh. Extremal graphs with local covering conditions. SIAM J. Discrete Math., 34(2):1354–1374, 2020.
- [3] P. Erdős. Some problems on finite and infinite graphs. In Logic and combinatorics (Arcata, Calif., 1985), volume 65 of Contemp. Math., pages 223–228. Amer. Math. Soc., Providence, RI, 1987.
- [4] P. Erdös. Some theorems on graphs. Riveon Lematematika, 9:13–17, 1955.

- [5] V. Falgas-Ravry, K. Markström, and Y. Zhao. Triangle-degrees in graphs and tetrahedron coverings in 3graphs. Combin. Probab. Comput., 30(2):175–199, 2021.
- [6] P. Frankl. Erdős-Ko-Rado theorem with conditions on the maximal degree. J. Combin. Theory Ser. A, 46(2):252–263, 1987.
- [7] P. Frankl, J. Han, H. Huang, and Y. Zhao. A degree version of the Hilton-Milner theorem. J. Combin. Theory Ser. A, 155:493–502, 2018.
- [8] P. Frankl and N. Tokushige. A note on Huang-Zhao theorem on intersecting families with large minimum degree. *Discrete Math.*, 340(5):1098–1103, 2017.
- J. Han, C. Zang, and Y. Zhao. Minimum vertex degree thresholds for tiling complete 3-partite 3-graphs. J. Combin. Theory Ser. A, 149:115–147, 2017.
- [10] H. Huang and Y. Zhao. Degree versions of the Erdős-Ko-Rado theorem and Erdős hypergraph matching conjecture. J. Combin. Theory Ser. A, 150:233–247, 2017.
- [11] A. Jung. Shadow of hypergraphs with bounded degree. Extremal Combinatorics Seminar, Rényi Institute, Budapest, Hungary, March 4, 2021.
- [12] G. Katona. A theorem of finite sets. In Theory of graphs (Proc. Colloq., Tihany, 1966), pages 187–207. Academic Press, New York, 1968.
- [13] J. B. Kruskal. The number of simplices in a complex. In *Mathematical optimization techniques*, pages 251–278. Univ. of California Press, Berkeley, Calif., 1963.
- [14] A. Kupavskii. Degree versions of theorems on intersecting families via stability. J. Combin. Theory Ser. A, 168:272–287, 2019.
- [15] A. Lo and K. Markström. *l*-degree Turán density. SIAM J. Discrete Math., 28(3):1214–1225, 2014.
- [16] A. Lo and K. Markström. F-factors in hypergraphs via absorption. Graphs Combin., 31(3):679–712, 2015.
- [17] L. Lovász. Combinatorial problems and exercises. North-Holland Publishing Co., Amsterdam-New York, 1979.
- [18] D. Mubayi and Y. Zhao. Co-degree density of hypergraphs. J. Combin. Theory Ser. A, 114(6):1118–1132, 2007.
- [19] R. Mycroft. Packing k-partite k-uniform hypergraphs. J. Combin. Theory Ser. A, 138:60–132, 2016.

Alfréd Rényi Institute of Mathematics, Budapest, Hungary and Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, USA

E-mail address: z-furedi@illinois.edu

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303 *E-mail address:* yzhao6@gsu.edu